Еще в Древнем мире было широко распространено ростовщичество - дача денег в долг под процент. В Древнем Вавилоне Лихва составляла до 20% в год. При этом, если должник не возвращал вовремя долг, на следующий год проценты начислялись уже не только на основную сумму долга, но и на наросшие проценты и т. д. Во многих случаях это приводило к тому, что должник оказывался несостоятельным и попадал в рабство.
Рассмотрим задачу:
Взята в долг сумма а рублей. Какую сумму надо отдать через n лет, если деньги взяты под р % в год?
Ясно, что за первый год нарастает сумма равна
и общая сумма долга равна
(рублей). На второй год проценты начисляются уже на сумму
и составляют сумму
, а потому общая сумма долга равна:
. Аналогично, к концу третьего года долг будет составлять
, четвертого:
. Вообще через n лет сумма долга составит:
.
Полученное равенство называют формулой сложных процентов.
Эту формулу применяют для вычисления суммы и в том случае, когда число протекших лет не является целым. Именно, через х лет надо выплатить сумму 
рублей.
При а=1 эта формула принимает вид:
и задает показательную функцию с основанием:
.
При р=100 имеем
.
Предположим теперь, что начисление процентов происходит не ежегодно, а ежемесячно, но зато процентная ставка в 12 раз меньше. Тогда через х лет сумма долга будет выражаться формулой
.Вычисления показывают, что
Если начисление процентов будет производиться ежедневно, но процентная ставка будет в 365 раз меньше (29 февраля начисления не производятся), то через х лет сумма долга будет выражаться формулой:
. Вычисления показывают, что:
.
Это значение весьма близко к значению числа е. Можно показать, что по увеличению n значение числа
приближается к е.
Другие примеры применения показательной и логарифмической функции в различных областях знаний представлены в приложении 1 .
Использование таких примеров полезно при введении понятия показательной и логарифмической функции и их свойств.
Учащиеся отвлекаются от сухого изложения материала, формул, которые просто заучивают наизусть, не понимая зачем. Такие примеры позволяют осмысленно применять знания и, пожалуй, самое главное, делают изучение математики интереснее и легче.
Другое о педагогике:
Эффективность реализации мероприятий по совершенствованию деятельности Муниципального учреждения
Разработка мероприятий по развитию Муниципального учреждения дополнительного образования детей «Центр эстетического воспитания детей» является необходимым условием выполнения ведущей миссии учреждения дополнительного образования - развитие мотивации ребенка к познанию и творчеству, способствующего ...
Игры с условной ситуацией для развития связной речи
учащихся
Мы учимся вместе, друзья! Цель игры. Помочь учащимся скорее познакомиться с другом. Воспитывать у них доброжелательность, внимание к товарищам. Материал для проведения игры. Мяч среднего размера. Ход игры. Все ученики становятся в круг, учитель с мячом находится внутри круга. Он бросает мяч кому-ли ...
Диагоностика самооценки школьников
Самооценка достаточно устойчива и часто, особенно у детей, неосознанна. Широко распространены в школьной практике тесты, направленные на исследование самооценки. Приведем, несколько примеров диагностики самооценки школьников разных возрастных групп (Тест "Лесенка" (4 – 6 лет), тест " ...