Еще в Древнем мире было широко распространено ростовщичество - дача денег в долг под процент. В Древнем Вавилоне Лихва составляла до 20% в год. При этом, если должник не возвращал вовремя долг, на следующий год проценты начислялись уже не только на основную сумму долга, но и на наросшие проценты и т. д. Во многих случаях это приводило к тому, что должник оказывался несостоятельным и попадал в рабство.
Рассмотрим задачу:
Взята в долг сумма а рублей. Какую сумму надо отдать через n лет, если деньги взяты под р % в год?
Ясно, что за первый год нарастает сумма равна
и общая сумма долга равна
(рублей). На второй год проценты начисляются уже на сумму
и составляют сумму
, а потому общая сумма долга равна:
. Аналогично, к концу третьего года долг будет составлять
, четвертого:
. Вообще через n лет сумма долга составит:
.
Полученное равенство называют формулой сложных процентов.
Эту формулу применяют для вычисления суммы и в том случае, когда число протекших лет не является целым. Именно, через х лет надо выплатить сумму 
рублей.
При а=1 эта формула принимает вид:
и задает показательную функцию с основанием:
.
При р=100 имеем
.
Предположим теперь, что начисление процентов происходит не ежегодно, а ежемесячно, но зато процентная ставка в 12 раз меньше. Тогда через х лет сумма долга будет выражаться формулой
.Вычисления показывают, что
Если начисление процентов будет производиться ежедневно, но процентная ставка будет в 365 раз меньше (29 февраля начисления не производятся), то через х лет сумма долга будет выражаться формулой:
. Вычисления показывают, что:
.
Это значение весьма близко к значению числа е. Можно показать, что по увеличению n значение числа
приближается к е.
Другие примеры применения показательной и логарифмической функции в различных областях знаний представлены в приложении 1 .
Использование таких примеров полезно при введении понятия показательной и логарифмической функции и их свойств.
Учащиеся отвлекаются от сухого изложения материала, формул, которые просто заучивают наизусть, не понимая зачем. Такие примеры позволяют осмысленно применять знания и, пожалуй, самое главное, делают изучение математики интереснее и легче.
Другое о педагогике:
Становление и развитие детского движения в 20–30-х гг. ХХ в
социальный педагогический беспризорность пионерский Воспитанию социальной активности детей в начале 20-х гг. способствовало пионерское движение. Это было время сложного противоречивого процесса его организационного оформления. В центре внимания первых теоретиков и практиков детского коммунистическо ...
Использование интерактивных технологий в образовательном процессе
Внедрение интерактивных форм обучения – одно из важнейших направлений совершенствования подготовки студентов в ВУЗе. Интерактивность («Inter» - это взаимный, «act» - действовать) означает взаимодействие, нахождение в режиме беседы, диалога с кем-либо. В отличие от активных методов, интерактивные ор ...
Особенности современного этапа подготовки кадров для
социальной работы
Энергичное введение и бурное развитие системы социальных служб и профессии социального работника поставили перед руководителями органов социального управления и учреждений социального обслуживания сложную проблему обеспечения квалифицированными кадрами создаваемых в достаточно быстром темпе структу ...