Элективные курсы в современной школе

Страница 2

Элективные спецкурсы, в которых углубленно изучаются отдельные разделы основного курса, не входящие в обязательную программу данного предмета.

Примерами таких курсов могут быть: «Комплексные числа», «Диофантовы уравнения», «Решение простейших дифференциальных уравнений», «Комбинаторика», «Элементы теории вероятностей», «Элементы математической логики», «Элементы теории множеств» и др.

Прикладные элективные курсы, цель которых - знакомство учащихся с важнейшими путями и методами применения знаний на практике, развитие интереса учащихся к современной технике и производству. Приведем возможные примеры таких курсов: «Математика и компьютер», «Математические методы в экономике», «Математические открытия» и др.

Элективные курсы, посвященные изучению методов познания природы. Примерами таких курсов могут быть: «Измерения величин», «Школьный математический практикум: наблюдение, эксперимент, моделирование», «Как делаются открытия», «Математическое моделирование», «Учимся проектировать на компьютере», «Компьютерное моделирование», «Дифференциальные уравнения как математические модели реальных процессов», «Математические модели и методы в естествознании и технике» и др.

Элективные курсы, посвященные истории предмета, как входящего в учебный план школы (история физики, биологии, химии, географических открытий), так и не входящего в него (история астрономии, техники, религии и др.).

Элективные курсы, посвященные изучению методов решения задач (математических, физических, химических, биологических и т.д.), составлению и решению задач на основе физического, химического, биологического эксперимента.

II. Межпредметные элективные курсы. Цель таких курсов - интеграция знаний учащихся о природе и обществе. В своей статье Далингер В. А. приводит примеры межпредметных элективных курсов:

Математика помогает лингвистике.

Оптика конических сечений.

Циклоида и ее практические приложения.

Компьютер – мой друг.

Числа Фибоначчи и природа.

Основы исследовательской деятельности.

Замечательные кривые в природе.

Симметрия в природе и т. д .

В профильной школе такие курсы могут выполнять двоякую функцию:

быть компенсирующим курсом для классов гуманитарного и социально-экономического профилей;

быть обобщающим курсом для классов естественнонаучного профиля.

III. Элективные курсы по предметам, не входящим в базисный учебный план.

Это курсы, посвященные психологическим, социальным, психологическим культурологическим, искусствоведческим проблемам. Приведем примеры таких курсов: «Введение в современные социальные проблемы», «Психология человека и человеческого общества», «Эффективное поведение в конфликте», «География человеческих перспектив», «Проблемы экологии», «Вопросы менеджмента и маркетинга» и др.

Отметим, что в качестве учебно-методического комплекса по элективным курсам может быть использована научно-популярная литература, математические справочники, сборники задач, а также учебные пособия по факультативным курсам, для кружковой работы. При конструировании элективного курса по математике необходимо учитывать также предыдущий опыт постановки факультативных курсов в средней школе, основные действующие учебники по алгебре и началам анализа, по геометрии, руководствоваться дидактическими принципами отбора содержания курса. Так, например, проблеме постановки и развития факультативных курсов посвящено много работ по теории и методике обучения математике К. В. Амосова, К. А. Нечипоренко, Е. Б. Семёнова, Т. И. Саламатова, И. М. Смирновой, Г. А. Самоновской, В. Д. Степанова, И. И. Позднякова, С. И. Шварцбурда, И. Ф. Шарыгина и др.

Любой элективный курс немыслим без определенного набора задач, соответствующих данному курсу. Задачи используются как очень эффективное средство усвоения школьниками понятий, методов, вообще математических теорий, как наиболее действенное средство развития культуры мышления учащихся, как незаменимое средство привития учащимся умений и навыков в практических применениях математики. Решение задач хорошо служит достижению всех тех целей, которые ставятся перед обучением математике.

Много различных рекомендаций по построению систем (блоков) задач содержится в трудах Э. Г. Готмана, Т. М. Калинкиной, В. И. Мишина, Г. В. Токмазова, П. М. Эрдниева и др. Принципам построения систем задач посвящены работы Л. В. Виноградовой, М. И. Денисовой, В. А. Далингера. О. Б. Епишевой, В. И. Крупича, Е. Ю. Мигановой, Г. И. Саранцева, А. А. Папышева и др.

Страницы: 1 2 3 4 5


Другое о педагогике:

Дидактическая концепция К.Д. Ушинского как система развивающего обучения
В середине XIX века во главе с К.Д. Ушинским активно всесторонне изучалась и разрабатывалась теория развивающего обучения. Идеи К.Д. Ушинского были развиты его последователями: Н. А. Корф, В. П. Вахтеров, Н.Ф. Бунаков, В.И. Водовозов, Д.Д. Семенов, Д.И. Тихомиров, В.Я. Стоюнин и другие. Теория разв ...

Проблема формирования интереса к изучению русского языка в школе
Однотипность и шаблонность уроков снижают интерес к обучению, делают учебный процесс скучным и бесперспективным. А уж в начальной школе такое проведение уроков вообще недопустимо. Русский язык является одним из сложных и отнюдь не самых интересных предметов в школе. Поэтому необходимо ещё в начальн ...

Описание процедуры исследования
Исследование проводилось в марте-мае 2005 года в гимназии №10 города Дивногорска. Было опрошено 3 параллели 9-х классов (90 человек), 50 родителей и 31 педагог данного образовательного учреждения. Все анкеты содержали три общих вопроса для трех категорий респондентов. Родители и педагоги рассматрив ...

Меню

Copyright © 2019 - All Rights Reserved - www.normaleducation.ru